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graphs. Finally, we give some useful combinatorial information by evaluating the Tutte polynomial at some special points.  
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1. INTRODUCTION 
The Tutte polynomial was introduced by W. T. Tutte in 1954 

in [22] as a generalization of chromatic polynomials studied 

by Birkhoff  [1] and Whitney [25]. This graph invariant 

became popular because of its universal property that any 

multiplicative graph invariant with a deletion/contraction 

reduction must be an evaluation of it, and because of its 

applications in computer science, engineering, optimization, 

physics, biology, and knot theory. 

 In 1985, V. F. R. Jones revolutionized knot theory by 

defining the Jones polynomial as a knot invariant via Von 

Neumann algebras [12]. However, in 1987 L. H. Kauffman 

introduced in [14] a state-sum model construction of the 

Jones polynomial that was purely combinatorial and 

remarkably simple; we follow this construction. 

 Our primary motivation to study the Tutte polynomial came 

from the remarkable connection between the Tutte and the 

Jones polynomials that up to a sign and multiplication by a 

power of t the Jones polynomial       of an alternating link   

is equal to the Tutte polynomial             [19, 16, 11].  

This paper is organized as follows: In Section 2 we shall give 

some basic notions about graphs and knots along with 

definitions of the Tutte and the Jones polynomials. In this 

section we shall also give the relation between graphs and 

knots, and the relation between the Tutte and the Jones. Then 

main results will be given in Section 3. 

 

2. Preliminary Notions 

2.1. Basic Concepts of Graphs 
A graph   is an ordered pair       of disjoint sets such that 

  is a subset of the set    of unordered pairs of  ; the set 

       is the set of vertices and        is the set of 

edges. An edge       is said to join the vertices   and    and 

is denoted by   ; the vertices   and   are the end vertices of 

this edge. If           , then   and   are said to be 

adjacent vertices of  , and the vertices    and   are incident 

to the edge   . Two edges are adjacent if they have exactly 

one common end vertex. A graph            is said to be a 

subgraph of         if      and       If  ′ contains 

all edges of   that join two vertices in    then     is said to be 

the subgraph induced or spanned by   , and is denoted by 

       Thus, a subgraph    of   is an induced subgraph if 

             If      , then    is said to be a spanning 

subgraph of    Two graphs are isomorphic if there is a 

correspondence between their vertex sets that preserves 

adjacency. Thus,         is isomorphic to             

denoted by     , if there is a bijection        such 

that      if and only if           The dual notion of a 

cycle is that of a cut or cocycle. If         is a partition of the 

vertex set, and the set  , consisting of those edges with one 

end in    and one end in   , is not empty, then   is called a 

cut. A cycle with one edge is called a loop and a cocycle with 

one edge is called a bridge. We refer to an edge that is neither 

a loop nor a bridge as ordinary. A graph is connected if there 

is a path from one vertex to any other vertex of the graph.   

connected subgraph of a graph   is called a component of  . 

We denote by      the number of connected components of 

a graph  , and by      the number of non-trivial connected 

components, that is the number of connected components not 

counting isolated vertices. A graph is  -connected if at least 

  vertices must be removed to disconnect the graph. A tree is 

a connected graph without cycles. A forest is a graph whose 

connected components are all trees. Observe that a loop in a 

connected graph can be characterized as an edge that is in no 

spanning tree, while a bridge is an edge that is in every 

spanning tree. A graph is planar if it can be drawn in the 

plane without crossings of edges.  

A drawing of a graph in the plane separates the plane into 

regions called faces. Every plane graph   has a dual graph 
  , formed by assigning a vertex of    ,  to each face of   

and joining two vertices of     by   edges if and only if the 

corresponding faces of   share   edges in their boundaries. If 

  is connected, then (   ) =  .  

A graph invariant is a function   on the collection of all 

graphs such that             whenever      . A graph 

polynomial is a graph invariant whose images lie in a 

polynomial ring. 

 

2.2 The Tutte Polynomial 
The following two operations are essential to understand the 

Tutte polynomial definition for a graph  . These are: edge 

deletion denoted by        and edge contraction 

        . 

 

 

Definition 2.1. [21, 22, 23]  

The Tutte polynomial of a graph   is a two-variable 

polynomial         defined as follows: 
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Example. 

                                    

                                        
                  

2.3 Basic Concepts of Knots  

A knot is a circle embedded in   , and a link is an 

embedding of a union of such circles; each circle is called a 

component of the link. A knot is a one component link. We 

shall often use the term link for both knots and links. Links 

are usually studied via projecting them on a plan; a projection 

with extra information of overcrossing and undercrossing is 

called the link diagram.  

Two links are called isotopic if one of them can be 

transformed to the other by a diffeomorphism of the ambient 

space    onto itself. A fundamental result about the isotopic 

link diagrams is: Two unoriented links    and    are 

equivalent if and only if a diagram of    can be transformed 

into a diagram of    by a finite sequence of ambient isotopies 

of the plane and local (Reidemeister) moves of the following 

three types [19]: 

 

 

 

 

 

 

 

 The set of all links that are equivalent to a link   is called a 

class of  . By a link   we shall always mean a class of the 

link  .  

 

2.4 The Jones Polynomials 
The main question of knot theory is which two links are 

equivalent and which are not? To address this question one 

needs a knot invariant, a function that gives one value on all 

links that belong to a single class and gives different values 

(but not always) on links that belong to different classes. We 

are concerned with the knot invariant, the Jones polynomial.  

 
Definition 2.3. [12, 13, 14] The Jones polynomial       of 

an oriented link   is a Laurent polynomial in the variable √  

satisfying the skein relation 

        
 ( 

 
 ⁄   

  
 ⁄ )    

 

and that the value of the unknot is 1. Here        and    are 

three oriented links having diagrams that are isotopic 

everywhere except at one crossing where they differ as in the 

figure:  

 

 
 

Example. The Jones polynomials of the Hopf link and the 

trefoil knot are: 

 ( )     
 ⁄   

  
 ⁄  

 

  ( )           

2.5 A Connection between Knots and Graphs 

Corresponding to every connected link diagram we 

can find a connected signed planar graph and vice versa. The 

process is as follows: Suppose   is a knot  

and    its projection. The projection    divides the plane into 

several regions. Starting with the outermost region, we can 

color the regions either white or black. By our convention, we 

color the outermost region white. Now, we color the regions 

so that on either side of an edge the colors never 

agree. 

 
 

 
 

Next, 

choose a vertex in each black region. If two black regions   

and    have common crossing points           then we 

connect the selected vertices of   and    by simple edges that 

pass through           and lie in these two black regions. In 

this way, we obtain from    a plane graph   [17]. However, 

in order for the plane graph to embody some of the 

characteristics of the knot, we need to use the regular diagram 

rather than the projection. So, we need to consider the under- 

and over-crossings. To this end, we assign to each edge of   

either the sign   or   as you can see in the following figure. 

 

 
 

 

A signed plane graph that has been formed by means of the 

above process is said to be the graph of the knot   [17]. 

Conversely, corresponding to a connected signed planar 

graph, we can find a connected planar link diagram. The 

construction is clear from the following figure. 
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The fundamental combinatorial result connecting knots and 

graphs is: 

Theorem 2.4. [16] The collection of connected planar link 

diagrams is in one-to-one correspondence with the collection 

of connected signed planar graphs. 

2.6. Connection between the Tutte and the Jones 

polynomials 
The primary motivation to study the Tutte polynomial came 

from the following remarkable connection between the Tutte 

and the Jones polynomials. 

Theorem 2.5. (Thistlethwaite’s) [20, 16, 11] Up to a sign 

and multiplication by a power of t the Jones polynomial       

of an alternating link   is equal to the Tutte polynomial 

               
For positive-signed connected graphs, we have the precise 

connection: 

Theorem 2.6. [2] Let   be the positive-signed connected 

planar graph of an alternating oriented link diagram  . Then 

the Jones polynomial of the link   

is                 
                  

              

where      is the number of vertices in  ,      is the 

number of vertices in the dual of G, and wr(L) is the writhe of 

L.  

 

Remark 2.7. In this paper, we shall compute Jones 

polynomials of links that correspond only to positive-signed 

graphs. 

 

Example: Corresponding to the positive-signed graph    

 we receive the right handed trefoil knot     It is easy 

to check that  (   )           and 

 (     )        . Further note that the number of 

vertices in   is 3, nuber of vertices in dual  in   is 2, 

and writhe of   is 3. Now notice that 

  (   )        
        

             

               

3. Main Results  
In this section the Tutte, Jones, flow, chromatic, and 

reliability polynomials are given. Some evaluations of the 

Tutte polynomial along with the homology of the planar 

graphs are also presented. 
 

3.1 The Tutte Polynomial  

In this section we give the general form of the Tutte 

polynomial of the following graph: 

For reference purposes, we denote this graph by     which is 

made up of a   vertices bus with   additional edges joined at 

the end vertices of the bus. 

Theorem 3.1. [8] If   and    are graphs then         
          and                  , 

where    ′ is the disjoint union of   and  ′ and      is 

formed by identifying a vertex of   and a vertex of  ′ into a 

single vertex.  

Lemma 3.2. The Tutte polynomial of the cycle    is 

   
      ∑      

     . 
Proof. We prove it by induction on n. The Tutte polynomials 

of the cycles   ,   , and    are: 

 ( )             

                                             
    and  

 (  )    (  )    ( )            

     Suppose the result holds for      , i.e., 

     
      ∑      

       Now taking a cycle    with   

vertices, we have                         ), where 

      means an edge is deleted from   . Using       
        and the inductive 

step, we get 

          ∑       
       ∑       

        

 

Theorem 3.3: The Tutte Polynomial of      is 

     
           (∑   

   

   

  ) ∑   

   

   

 

         (
      

   
  ) (

    

   
)  

for          

Proof: We proof it by induction on   by keeping k fixed. 
For    , we have  

 ( )       ( )

      ∑   

   

   

   

To get a clear picture, we also give Tutte polynomial for 

    and    : 

For      we have  

 ( )   ( )   ( ) 

      ∑   

   

   

       

      ∑   

   

   

    (∑   

   

   

  ) 

      (∑   

   

   

  )       

 For      we get 
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Suppose the result hold for     and      that is 
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If        then  

 ( )       
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)  which is the required 

result. 

 

3.2 The Jones Polynomial  
The alternating links   that correspond to the graph      fall 

into two categories, the 1-componet links (when   is even) 

and the 2-component links (when   is odd). Depending on   

and  , we receive the four cases: 

Case I:                   ) 
When both   and   are even, we receive 1-component links 

(means simply knots); these knots along with the 

corresponding graphs are given in the following tables. 

When     

 

        

    

  

  

 

  

           

           

               

 

When     

        

    

 

     

           

           

                

 

Proposition 3.4:  The Jones polynomial of the alternating 

link   that corresponding to the planar graph     , when both 

  and   are even , is        
  

  
 
  
      

      
          

         . 

Proof: We prove it by specializing the Tutte polynomial of 

the graph      using Theorem 2.3, which says that 

                
                

       
          

Note that when both   and   are even, then        
         and               so the factor 

          
                

  reduces to   
  

 
    

. Now, the 

Jones polynomial of the link   is  
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Case II, (When   is odd and   is even) 

 

When     

        

    

 

   

  

           

           

             

 

When     

        

    

 

    

 

           

           

               

 

Proposition 3.5:  The Jones polynomial of the alternating 

link   that corresponding to the planar graph     , when both 

  is odd and   is even , is        
  

  
 
  
      

      
        

           . Proof: This proof is similar to the proof of 

Proposition 3.4; in this case                 and 

            and so the factor reduces to  

          
                

  reduces to          

Case III (  and   are odd.) In this case we get 1-componet 

links, and that                 and         
   . 

Proposition 3.6:  The Jones polynomial of the alternating 

link   that corresponding to the planar graph     , when both 

  is odd and   is even , is           
  

 
   

 
 
 

      
        

           . 

Proof: Similar to the proof of Proposition 3.4:  Case IV. 

(When   is even and   is odd.) In this case we receive 2-

component links as you can see in the following tables. 

When     

        

   

  

  

   

           

           

                     

When     

        

   

  

   

  

           

           

                        

  

Proposition 3.7:  Suppose   is link corresponding to the 

planar graph      such that   is even and   is odd. If both the 

component of   are oriented either in clockwise or in 

counterwise direction then  is 

          
  

 
 

 

  
 
 
  

 
 

      
                    . 

Proof: Similar to the proof of Proposition 3.4 just observe 

that                 and            , when 

the components of the link   are oppositely oriented then 

writhe of L becomes           , and we get the result:   

Proposition 3.8:  Suppose   is link corresponding to the 

planar graph      such that   is even and   is odd. If both the 

component of   are oriented either in opposite direction, then    
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                    . 

The following results reflects the degree of     
Proposition 3.9: Suppose   is the link corresponding to the 

graph       then  

        
 

 
               . 

Proof: Substitution            in the Equation (3.3) and 

then simplifying we get 

                   
 

       
                             

Observe that the highest exponent of   in the first term of this 

equation is       while in the second term is        Since 

      is the product of           
                

 and 

             the degree term is actually 

[          
                

 ]          , and hence the degree of 

      is 14[n + 3k − 3 + 3wr(L)]. Hence the degree of    is 
 

 
                 

3.3. The Flow Polynomial                                    
The flow polynomial was investigated by W. T. Tutte in 1947 

in [20] as a function which could count the number of flows 

in a connected graph. 

Definition 3.10. Let   be a graph with an arbitrary but fixed 

orientation, and let   be an Abelian group of order   and 

with 0 as its identity element. A        is a mapping φ of 

the oriented edges  ⃗    ) into the elements of the group   

such that: ∑             ∑               for every vertex 

 , and where the first sum is taken over all arcs towards   

and the second sum is over all arcs leaving  . A  -flow is 

nowhere zero if   never takes the value 0. The relation 4.1 is 

called the conservation law (that is, the Kirchhoff’s law is 

satisfied at each vertex of  ). It is well known [2, 3, 6] that 

the number of proper  -flows does not depend on the 

structure of the group, but rather only on its cardinality, and 

this number is a polynomial function of h that we refer to as 

the flow polynomial.  The following, due to Tutte [22], 

relates the Tutte polynomial of   with the number of nowhere 

zero flows of   over a finite abelian group (which, in our 

case, is   ).  

Theorem 3.11. [22] Let           be a graph and   a 

finite Abelian group. If     ) denotes the number of nowhere 

zero  -flows then   

          | | | |               
Proposition 3.12. The flow polynomial of the graph      is 

     
    

       

 
                

Proof: We it using Theorem 3.11. Since in the graph     , 

       | |        and | |     we have  

     
    

             

 
                    

which, on simplifying, gives the desired result. 

 
 

3.4. The Chromatic Polynomial  
The chromatic polynomial, because of its theoretical and 

applied importance, has generated a large body of work. Chia 

[5] provides an extensive bibliography on the chromatic 

polynomial, and Dong, Koh, and Teo [7] give a 

comprehensive treatment. For positive integer  , a 

  coloring of a graph   is a mapping of      into the set 

                 of   colors. Thus, there are exactly    

colorings for a graph on   vertices. If   is a  -coloring such 

that            for all       , then   is called a proper 

(or admissible) coloring. 

Definition 3.13. The chromatic polynomial       of a graph 

  is a one variable graph invariant and is defined recursively 

by the following deletion contraction relation:         
                   
In order to find the number of proper   colorings of the 

graph     , we find the chromatic polynomial of this graph as 

a special case of the Tutte polynomial      
       The 

following is the precise relation between these polynomials. 

Theorem 3.14. [2] The chromatic polynomial of a graph 

          is  

    )  =      |  |                      where      denote 

the number of connected components of  .  

Proposition 3.15. The chromatic polynomial of the graph 

     is   

    )  =                            
Proof. Note that | |      and          for the graph     . 

Now, using Theorem 3.14, we have 

              *         
              

     
+ 

                                   
                              

                          
                       . 

3.5. The Reliability Polynomial  

Definition 3.16. Let   be a connected graph or network with 

| |  vertices and | |  edges, and suppose that each edge is 

independently chosen to be active with probability  . Then 

the (all terminal) reliability polynomial is  
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  | |       | |   | |  

| | | |  

   

 

where   is the connected spanning sub-graph of   and gi is 

the number of spanning connected sub-graphs with   | |  
  edges. Thus the reliability polynomial,      , is the 

probability that in this random model there is a path of active 

edges between each pair of vertices of  . 

Theorem 3.17. [8] If   is a connected graph with | | edges 

and | | vertices, then  

       | |       | | | |       
 

   
  

Proposition 3.18. The reliability polynomial       of      is 
                                         

Proof:  Since in our case |  |      and |  |             , 

the factor  | |       | | | |   becomes           . 

Also, it is simple to check that ∑          
    and 

∑ (
 

   
)

 

 
         

             
     Now Using 

Theorem 3.3 and 3.17, we have  

     
           [  (    

 

   
) (

 

         
)           ] 

           [ (    
 

   
) (

 

         
)           ] 

                                          
which is the desired result. 

 

3.6. Subgraphs  
The following theorem gives information about the number 

of different types of sub-graphs of a connected graph G.  

Theorem 3.19. [8] If   is a connected graph then: 

1.         is the number of spanning trees of  . 

2.         is the number of spanning forests of  . 

3.         is the number of spanning connected subgraphs of 

 .  

4.         equals  |  |  and is the number of subgraphs of  . 

Proposition 3.20. The following statements hold for the 

connected planar graph     .  

1.      
                

2.      
                      

3.      
            .   

4.      
                 

Proof. In order to prove it we first note that ∑         
   

   ∑              ∑         
   

   
    and ∑          

   

   So  

1. T                                   

2.                                      
            
3.                      | |             .  

4                                            
            

3.7. Orientations and Score Vectors 

The combinatorial interpretations of the Tutte polynomial in 

Theorem 3.19 are given in terms of the number of certain 

sub-graphs of the graph  . However, they can also be given 

in terms of orientations of the graph and its score vectors. An 

orientation of a graph   is the graph    all of whose edges are 

directed. The score vector of an orientation    is the vector 

                such that vertex i has out-degree    in the 

orientation. In the following theorem we gather several 

similar results about the Tutte polynomial and orientations of 

a graph. 

Theorem 3.21. [8] If   is a connected graph, then 

1.         equals the number of acyclic orientations of  , 

that is orientations without oriented cycles [4]. 

 

2.          equals the number of acyclic orientations with 

exactly one predefined source   [24].                

3.        ) equals the number of totally cyclic orientations of 

 , that is orientations in which every arc is in a directed 

cyclic [24].  

4.         equals the number of score vectors of orientations 

of   [4]. 

Proposition 3.22. The following statements hold for the 

connected planar graph      

1.                
2.                . 

3.              
4.                           
Proof. Similar to the proof of Proposition 3.20. 
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